
How to Better Utilize Code Graphs in Semantic Code Search?
Yucen Shi

shiyucen@stumail.neu.edu.cn
School of Computer Science and

Engineering, Northeastern University
Shenyang, China

Ying Yin
yinying@cse.neu.edu.cn

School of Computer Science and
Engineering, Northeastern University

Shenyang, China

Zhengkui Wang
zhengkui.wang@singaporetech.edu.sg

InfoComm Technology Cluster,
Singapore Institute of Technology

Singapore

David Lo
davidlo@smu.edu.sg

School of Information Systems,
Singapore Management University

Singapore

Tao Zhang
tazhang@must.edu.mo

School of Computer Science and
Engineering, Macau University of

Science and Technology
Macau, China

Xin Xia
xin.xia@acm.org

Software Engineering Application
Technology Lab, Huawei

Hangzhou, China

Yuhai Zhao∗
zhaoyuhai@mail.neu.edu.cn

School of Computer Science and
Engineering, Northeastern University

Shenyang, China

Bowen Xu
bowenxu.2017@phdcs.smu.edu.sg
School of Information Systems,

Singapore Management University
Singapore

ABSTRACT
Semantic code search greatly facilitates software reuse, which en-
ables users to find code snippets highly matching user-specified
natural language queries. Due to the rich expressive power of code
graphs (e.g., control-flow graph and program dependency graph),
both of the two mainstream research works (i.e., multi-modal mod-
els and pre-trained models) have attempted to incorporate code
graphs for code modelling. However, they still have some limita-
tions: First, there is still much room for improvement in terms of
search effectiveness. Second, they have not fully considered the
unique features of code graphs.

In this paper, we propose aGraph-to-Sequence Converter, namely
𝐺2𝑆𝐶 . Through converting the code graphs into lossless sequences,
𝐺2𝑆𝐶 enables to address the problem of small graph learning using
sequence feature learning and capture both the edges and nodes
attribute information of code graphs. Thus, the effectiveness of code
search can be greatly improved. In particular, 𝐺2𝑆𝐶 first converts
the code graph into a unique corresponding node sequence by a spe-
cific graph traversal strategy. Then, it gets a statement sequence by
replacing each node with its corresponding statement. A set of care-
fully designed graph traversal strategies guarantee that the process
is one-to-one and reversible.𝐺2𝑆𝐶 enables capturing rich semantic
relationships (i.e., control flow, data flow, node/relationship prop-
erties) and provides learning model-friendly data transformation.
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It can be flexibly integrated with existing models to better utilize
the code graphs. As a proof-of-concept application, we present two
𝐺2𝑆𝐶 enabled models: GSMM (𝐺2𝑆𝐶 enabled multi-modal model)
and GSCodeBERT (𝐺2𝑆𝐶 enabled CodeBERT model). Extensive ex-
periment results on two real large-scale datasets demonstrate that
GSMM and GSCodeBERT can greatly improve the state-of-the-art
models MMAN and GraphCodeBERT by 92% and 22% on R@1, and
63% and 11.5% on MRR, respectively.
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1 INTRODUCTION
Semantic code search plays a vital role for software developers
to serve various purposes, especially code reuse, which enables
users to find code snippets highly matching user-specified natural
language queries. For example, to the query "How to read an object
from an xml?", code search engine returns a code snippet candidate
like Figure 1 from a billion-token-scale code base (e.g., Github).
The reuse of existing code avoids the necessity for developers to
reinvent the wheel and save the time and resource cost during
software development.
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Figure 1: Code snippet for query "How to read an object from
an xml?"

The task is non-trivial as there is often a semantic gap between
the high-level intent in the natural language queries and the low-
level implementation details in the source code [13]. For example,
the code snippet in Figure 1 contains none of the key words in the
query such as read and object or other similar texts. Thus, those
unimodal approaches that are based solely on keyword matching or
text similarity, such as information retrieval (IR)-based code search
approaches [25, 26, 29, 36, 40], cannot address the challenge well.

Recent research works have proposed various multi-modal mod-
els based on deep learning techniques. As the lexical gap between
queries and source code is bridged by their semantic representa-
tion learning in high-dimensional space, they succeed in improv-
ing search effectiveness. These works can be categorized into two
main streams: 1.) the multi-modal models with pre-training, which
are designed with Transformer-based architecture and guided by
several pre-training tasks to learn the generic representation of
multi-modal data and then fine-tuned for a set of code-related
downstream tasks such as code search, code summarization, etc.;
2.) the multi-modal models without pre-training, which are specifi-
cally trained for code search in an end-to-end way. For simplicity,
we refer to the models in the above-mentioned first and second
main streams of work as pre-trained models and multi-modal mod-
els respectively. CodeBERT [10] and DCS [13] are the examples of
pre-trained models and multi-modal models, respectively.

Though these models are more capable to capture more seman-
tics, they still suffer from using simple features of code and ignore
the code structural information. Code graphs (e.g., abstract syntax
trees (ASTs) or control-flow graphs (CFGs)) have been proven ef-
fective and expressive to capture the rich structural semantics of
the source code[20, 45]. The most recent research effort is made to
leverage the code graphs in both of the two research streams. For
example, in the multi-modal model stream, Wan et al. [45] proposed
a multi-modal attention networkMMAN by integrating CFGs in the
model and adopted the Graph Neural Networks (GNNs) to learn the
semantic information hidden in the code graphs followed by an at-
tention layer to integrate the unstructured and structured features.
In the pre-trained model stream, GraphCodeBERT [16] introduced
a graph-guided masked attention function to incorporate the code
structure that captures data flow. However, through an in-depth
study of the two main streams of work, we have the following two
findings that motivate our work in this paper.

1.) Both of them still have much room for improvement in the search
effectiveness. For example, according to the original results reported
in MMAN [45] and GraphCodeBERT [16], the two models have
achieved the state-of-the-art in their respective tasks. However, on
a widely used evaluation metric Mean Reciprocal Rank (MRR) with

(a) PDG of code in Figure 1 (b) Node size of code graphs

Figure 2: Code graph (PDG) and its node distribution in two
data sets JAVA-2M and CodeSearchNet

a maximum value of 1,MMAN and GraphCodeBERT can only reach
about 0.452 and 0.713, respectively. Compared to their respective
counterpart DCS (0.377) and CodeBERT (0.693), MRR is improved
by only 0.075 and 0.02, respectively.

2.) They both ignore the potential difficulties and challenges aris-
ing from the unique features of code graphs, which contain diverse
information and are usually small. Figure 2(a) shows the program
dependency graph (PDG) [11] of the code snippet in Figure 1. Ob-
servably, a PDG contains two kinds of structural information, i.e.,
control dependency (the dashed edge for control flow) and data
dependency (the solid edge for data flow), as well as two kinds
of attribute information, i.e., the node attribute (the statement in
each node) and the edge attribute (the parameter variable on a
data dependency edge). The multi-modal model MMAN and the
pre-trained model GraphcodeBERT incorporated the code structure
that captures control flow or data flow into their learning task re-
spectively. However, they still may potentially lose much valuable
information, since the control flow or the data flow alone can only
capture the statement control relationship or the variable relation-
ship. More importantly, the code graphs are often small in size. As
Figures 2(b) shows, most of the code graphs (CFGs and PDGs) ex-
tracted from two real data sets for code search (CodeSearchNet [22]
and the data set we collected JAVA-2M) have only 2-5 nodes and
very few of them have more than 20 nodes. The multi-modal model
MMAN utilized GNNs to embed CFGs as the structural features.
However, existing research [19] has shown that GNNs often achieve
better performance on the large graphs with 2, 000 to 20, 000 nodes.

The two findingsmotivate us that the effectiveness of code search
could be substantially improved if those unique features of code
graph are more fully utilized in the semantic learning model. In
this paper, to tackle the problem, we propose a Graph-to-Sequence
Converter (G2SC). By converting the code graphs to lossless se-
quences that retain complete graph structure information, 𝐺2𝑆𝐶
enables to address the problem of using GNN for small graph learn-
ing through sequence feature learning and capture both the edges
and nodes attribute information of code graphs. In particular,𝐺2𝑆𝐶
first converts the code graph into a unique corresponding node
sequence by a specific graph traversal strategy. Then, it obtains a
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statement sequence by replacing each node with its corresponding
statement. A set of carefully designed graph traversal strategies
guarantee that the process is one-to-one and reversible. 𝐺2𝑆𝐶 en-
ables capturing rich semantic relationships (i.e., control flow, data
flow, node/relationship properties), and provides learning model-
friendly data transformation. Further, to show thatG2SC can be flex-
ibly integrated with the state-of-the-art models in the two research
streams, i.e. the multi-modal model and the pre-trained model, and
greatly improve their effectiveness, we present two G2SC enabled
models: GSMM (G2SC enabled MMAN model) and GSCodeBERT
(G2SC enabled CodeBERT model). Specifically, GSMM adopts the
bi-directional Long Short-Term Memory (BiLSTM [43]) to learn the
structured feature of code graphs from G2SC converted sequences
followed by an attention layer to integrate the unstructured and
structured features together. GSCodeBERT replaces the code se-
quence in the code-description sequence with the G2SC-converted
sequence to further fine-tune CodeBERT model. The replication
package of our work has been released at Github1.

The main contributions of our work are summarized as follows.
1.) We present a Graph-to-Sequence converter (G2SC), which

transforms the code graphs into lossless sequences. Through G2SC,
the structural information of code graphs can be effectively learned
by using sequence feature learning. To the best of our knowledge,
we are the first to introduce the idea into the semantic code search.

2.) We propose two G2SC enabled semantic code search models:
G2SC enabled multi-modal model (GSMM) and G2SC enabled Code-
BERT (GSCodeBERT ). They both demonstrate the generality and
applicability of integrating G2SC into existing models to improve
their capability of utilizing code graphs for semantic code search.

3.) We have conducted extensive experiments to evaluate the
proposed G2SC enabled models over various real datasets. The
results show that G2SC improves the state-of-the-art models in the
two streams substantially. For example, in terms of MRR, GSMM
improves DCS and MMAN by 100% and 63% respectively, while
GSCodeBERT improves CodeBERT and GraphCodeBERT by 13% and
11.5% respectively.

Outline. The remainder of this paper is organized as follows.
Section 2 introduces the research background of this paper. In
Section 3, we present an overview of G2SC. Section 4 presents the
two G2SC-enabled models. In Section 5, we provide experimental
evaluations to address our research questions. Finally, Section 6
and Section 7 provide the related work and conclusion respectively.

2 BACKGROUND
In this section, we introduce the overall process of deep learning-
based semantic code search and four representative models from the
two mainstream research, i.e. DCS, MMAN, CodeBERT and Graph-
CodeBERT, which are selected for comparison in our experiments.

2.1 Deep Learning-based Semantic Code Search
As shown in Figure 3, the overall process of deep learning-based
semantic code search includes three main phases: offline training,
offline code embedding, and online code search. First, a deep neural
network takes a large-scale corpus of < 𝑐𝑜𝑑𝑒, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 > pairs
as input and maps them into a unified high-dimensional vector
1https://github.com/G2SMM/G2SC

Figure 3: Deep learning based code search process

space that code snippets and descriptions with similar semantics
are embedded into nearby vectors of the space (the training phase).
Then, the trained model is used to compute a vector for each code
snippet in a given codebase that users would like to search (the
embedding phase). Finally, an online query (e.g. How to read an
object from xml?) is also embedded into a vector when it arrives.
By computing vector similarity, code snippets whose vectors are
similar to the query vector, such as the code snippet in Figure 1, are
returned and recommended to users (the online code search phase).

Intuitively, the quality of vector representation learned in the
training phase determines the effectiveness of the solutions in per-
forming code search. To return code snippets 𝑆 that highly match
a query 𝑄 in semantics, the code search model needs to learn a
correlation 𝑓 between 𝑄 and 𝑆 , namely,

𝑓 : 𝑄 → 𝑆 (1)

For this purpose, the model training is expected to produce close
representation of code snippets and their corresponding descrip-
tions. Given a set of code snippets 𝑆 and their natural language
descriptions 𝐷 , the task in this phase can be formulated as:

𝐷
𝜙
−→ 𝑉𝐷 −→ 𝐽 (𝑉𝐷 ,𝑉𝑆 ) ←− 𝑉𝑆

𝜑
←− 𝑆 (2)

where 𝜙 : 𝐷 → 𝑅𝑑 is an embedding function to map a code snippet
description 𝐷 into a 𝑑-dimensional vector space 𝑉 as a vector 𝑉𝐷 ,
𝜑 : 𝑆 → 𝑅𝑑 is an embedding function to map a code snippet 𝑆
into the same vector space as 𝑉𝑆 . 𝐽 (·, ·) is a measure function (e.g.
cosine similarity) to score the similarity between𝑉𝐷 and𝑉𝑆 . During
the training, the model is guided by the spirit of producing higher
similarity between a code snippet 𝑆 and its correct description 𝐷+

and lower similarities between 𝑆 and its incorrect descriptions 𝐷−
simultaneously. Once the model is trained, the correlation 𝑓 be-
tween𝑄 and 𝑆 can be easily set up through their vectors embedded
by functions 𝜙 and 𝜑 , respectively.

2.2 Mainstream Models for Code Search
Our G2SC aims to improve both multi-modal and pre-trained mod-
els. Four representative works from two mainstream solution fami-
lies are considered in this work, including two multi-modal models
DCS [13] and MMAN [45], and two pre-trained models CodeBERT
[10] and GraphCodeBERT [16].
A. Multi-modal Models

1.)Deep code search (DCS):DCS is the first deep learning based
code search model proposed by Gu et al. It learns the code repre-
sentation by extracting and fusing three aspects of information,
i.e. multi-layer perceptron (MLP) for the tokens contained in the
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Figure 4: Overall framework of using G2SC for code search

source code (body tokens) and Recurrent Neural Networks (RNN )
[33] for the method names and the API sequences. However, DCS
ignores the structure information that the code may contain.

2.) Multi-modal attention network (MMAN): MMAN is the
state-of-the-art multi-modal model proposed by Wan et al, which
introduces the code structure information into the code search
task [45]. It embeds ASTs by TreeLSTM, CFGs by GGNN (gated
graph neural network) and code sequences by LSTM followed by
an attention fusion layer to integrate them into a single vector
representing the entire code. However,MMAN ignores the fact that
code graphs are usually small and contain diverse information (e.g.
control dependency and data dependency in PDG).
B. Pre-trained Models

1.)CodeBERT: CodeBERT is the first pre-trained model that can
be used in code search proposed by Feng et al. Inspired by BERT [7],
it adopts the Transformer architecture and uses two pre-training
tasks, MLM (Masked Language Model) and RTD (Replaced Token
Detection), to learn the general model parameters for a set of code-
related downstream tasks such as code search, code summarization,
etc. Since it is not designed for the code search task alone, the user
needs to perform additional fine-tuning to return the query result.
However, CodeBERT still ignores the code structure information.

2.) GraphCodeBERT: GraphCodeBERT is the state-of-the-art
pre-trained model that can be used in code search proposed by
Guo et al. It is an upgraded version of CodeBERT introducing the
variable graph structure that captures the data flow[16]. Besides the
MLM task in CodeBERT, it uses two more variable graph-specific
pre-training tasks, edge prediction and node alignment, as well as
a graph-guided masked attention function. However, GraphCode-
BERT ignores rich semantic information other than the variable
relationship, such as the control relationship in Figure 2(a).

3 THE GRAPH-TO-SEQUENCE CONVERTER
The unique characteristics of the code graphs bring great challenges
for the existing semantic code search models. To improve their
effectiveness, it may be a promising way to ensure that the data can
be supported and fit into the learning model nicely. Unfortunately,
as mentioned in Section 1, the capability of existing learningmodels,
even the GNN, is not so friendly to learn the code graphs.

To tackle this issue, we propose a Graph-to-Sequence Converter
(G2SC) based solution. Figure 4 presents the overall framework of

using G2SC in the code search model, which is the core of the entire
code search process. Once an effective code search model is trained,
we only need to apply G2SC in the later two phases in Figure 3,
i.e., offline code embedding and online code search, to find code
snippets highly matching user-specified natural language queries.

As shown in Figure 4, our solution comprises two main com-
ponents: 1.) G2SC module. It transforms the code graphs into a
type of the model-friendly data format, code sequences that can
losslessly retain the code graph structure information as well as
the key attribute information related to the edges and nodes; 2.)
G2SC-enabled model. By learning the sequences converted by G2SC
and other code information, such as code textual information and
natural language description, through different carefully-designed
strategies, we are able to develop various G2SC enabled models.

In this section, we focus on the G2SC module. It first converts the
code graph into a unique corresponding node sequence by a specific
graph traverse. Then, it gets a statement sequence by replacing each
node with its corresponding statement. A set of carefully designed
graph traversal rules guarantee that the process is one-to-one and
reversible. Thus, the graph structure information is retained in the
converted sequence in a lossless manner. For ease of demonstration,
we will explain the 𝐺2𝑆𝐶 by using PDGs. One reason is that PDG
is a more complex code graph with both control dependency and
data dependency than others like CFG [11]. Another reason is that
PDG is used as the graph feature in our proposed models. Note that
𝐺2𝑆𝐶 can be easily extended to handle different kinds of the code
graphs like CFG, etc.

Algorithm 1 provides the details of our graph-to-sequence con-
verter algorithm. In the first step, given a PDG, we need to identify
the sequence entry node for the PDG sequence we want to gen-
erate. Since PDG only has one root node, the root node 𝑣0 of a
PDG can be directly selected as the entry 𝑠0 of the entire PDG se-
quence (Algorithm 1 line 1). After that, starting from node 𝑠0, we
recursively select an edge for expansion according to the following
rules in order: 1.) The backtracking edge (the edge whose endpoint
has been traversed) is selected before the forward edge (the edge
whose endpoint has not been traversed); 2.) When there are mul-
tiple backtracking edges or only multiple forward edges, we can
either choose control dependency edge or data dependency edge
for the traversal after the first step. Either priority can produce a
unique result. In our graph-to-sequence algorithm, we set control
dependency edges to have higher priority (Algorithm 1 line 4-8);
3.) If the edge still cannot be determined after the second step, we
select the edge whose endpoint is of the highest priority as the
preferentially expanded edge. In our method, the priority of nodes
is determined by the order of their corresponding statements in the
code snippet (Algorithm 1 Function Edge_Check); 4.) In particu-
lar, if there are no connected edges, the traversal continues back
to the nearest ancestor node with at least one edge that has not
been traversed (Algorithm 1 line 9-11). During traversing the PDG,
we can follow the following two steps to generate our proposed
PDG sequence (Algorithm 1 Function Sequence_Expand): 1○ If the
traversed edge 𝑒 is a control dependency edge, we only add the
attribute of the node pointed by 𝑒 to the resultant PDG sequence 𝑆 ;
2○ If the traversed edge 𝑒 is a data dependency edge, we add the
attribute of 𝑒 and the attribute of the node pointed by 𝑒 to 𝑆 in turn.
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Algorithm 1: Graph-to-sequence Algorithm
Input: Graph 𝐺 = {𝑉 , 𝐸} 𝑉 = {𝑣0, . . . , 𝑣𝑛} 𝐸 = {𝑒0, . . . , 𝑒𝑚}
Output:Minmum PDG sequence 𝑆 = {𝑠0, 𝑠1, . . . }

1 initialize 𝑆 = {} 𝑖 = 0, append 𝑣0 as 𝑠0 into 𝑆 ;
2 while 𝐸 is not NULL do
3 select edge 𝑒 connect with 𝑠𝑖 ;
4 if e contains backtracking edge then
5 select the backtracking edge as 𝑒;
6 Sequence_Expand(Edge_Check(𝑒),𝑆);
7 else if 𝑒 contains forward edge then
8 Sequence_Expand(Edge_Check(𝑒),𝑆);
9 else if 𝑒 is NULL then
10 select the nearest father of 𝑠𝑖 which has forward

edge 𝑒 ′ as 𝑒;
11 Sequence_Expand(Edge_Check(𝑒),𝑆);

Function: Sequence_Expand(𝑒 , 𝑆)
1 if e is control dependency edge then
2 𝑆 ← {𝑒 → 𝑣} and remove 𝑒 from 𝐸;
3 (𝑒 → 𝑣 means the node 𝑣 ∈ 𝑉 that e points to)
4 i=i+1;
5 else if e is data dependency edge then
6 𝑆 ← {𝑒, 𝑒 → 𝑣} and remove 𝑒 from 𝐸;
7 i=i+2;

Function: Edge_Check(𝑒)
1 if there is only one edge then
2 select the edge as 𝑒;
3 else if there are multiple edges then
4 if there exists multiple control dependency edges then
5 compare all control dependency edge 𝑒𝑥 → 𝑣𝑥 and

select the minmum condition 𝑒𝑥 as 𝑒;
6 else
7 compare all 𝑒𝑥 → 𝑣𝑥 and select the minmum

condition 𝑒𝑥 as 𝑒;

Figure 5: Process of converting PDG to sequence

Here we give an example in Figure 5 to illustrate how to convert
a PDG to its unique corresponding sequence. Given a PDG in Figure
5, the order of nodes is the order in which they are executed in
the program, the dashed line represents the control dependency
edge, and the solid line represents the data dependency edge with
its attribute 𝑒𝑖 . The first traversal is 𝑎 d 𝑏 since root node 𝑎 is
the program entry. The second traversal is 𝑏 d 𝑐1 because the
control dependency edge needs to be traversed first according to our

proposed edge expansion rule. The third traversal is 𝑐1
𝑒1−−→ 𝑎, where

the attribute of the edge is 𝑒1, because we define the backtracking
edge has the highest priority. In the fourth traversal, we go back to
𝑐1, so the traversal is 𝑐1 d 𝑑 . In the fifth traversal, we traverse the
backtracking edge from 𝑑 , which is 𝑑

𝑒2−−→ 𝑏, where the attribute of
the edge is 𝑒2. After that, since 𝑑 and 𝑐1 have no subsequent node,
we return 𝑏 for the last traversal of 𝑏

𝑒3−−→ 𝑐2, where the attribute of
the edge is 𝑒3. So far, we can obtain the sequence of edges of PDG by
the traversal process shown in Figure 5. In the PDG sequence, the
control dependency edge has no attributes since it only means the
control dependency between two nodes. Then, we use the number
in the lower right corner of each box to represent the sequence it
corresponds to (e.g. 1○ represents sequence {𝑎, 𝑏} and 3○ represents
sequence{𝑐1, 𝑒1, 𝑎}). Finally, we can obtain the PDG sequence <

𝑎𝑏𝑏𝑐1𝑐1𝑒1𝑎𝑐1𝑑𝑑𝑒2𝑏𝑒3𝑐2 > by connecting all circles in digital order.
Note: the graph-to-sequence algorithm is also reversible. Given
the PDG sequence obtained above, we can restore the traversal
process by picking two adjacent nodes at a time from scratch (e.g.
first {𝑎, 𝑏} → 1○, second {𝑏, 𝑐1} → 2○, third {𝑐1, 𝑒1, 𝑎} → 3○ and
so on). After that, we only need to reconnect the edges in the order
of the numbers in the circle to regain the PDG in Figure 5. Since the
process is reversible, no information will be lost when converting
the sequence through our graph-to-sequence algorithm. It should
be noted that the graph-to-sequence algorithm only requires linear
time consumption𝑂 ( |𝐸 |), which means it does not need much time
for PDG preprocessing.

4 G2SC ENABLED MODELS
The G2SC enabled model is the second component of our solution.
𝐺2𝑆𝐶 is designed as a general converter, which can empower vari-
ous learning models to integrate the code graphs for effective code
search. Thus, it can be easily incorporated into other models. In
this section, we take the two mainstream models as examples to
present two G2SC enabled models, namely GSMM (G2SC enabled
multi-modal model) and GSCodeBERT (G2SC enabled CodeBERT
model).

4.1 Data Pre-processing
The pre-processing is performed based on a large-scale training cor-
pus. For multi-modal models, we first extract a collection of pairs of
code snippets and their corresponding descriptions. For the descrip-
tion part, we extract all the words and sort them by JAVA word split
API2 to get a token sequence. For the code part, we adopt the same
method for extracting Body Token (tokens in function body) and
Method name (function name) from code snippet. Similar to DCS,
we treat tokens as unordered ones in the source code. In addition,
we extract the PDGs from code snippets through an extraction tool
TinyPDG3. Then, all PDGs are converted to PDG sequences using
our G2SC proposed in Section 3. For the pre-trained models, Code-
BERT and GraphCodeBERT both provide pre-processing source
programs in their downstream tasks. Therefore, we can directly
utilize them in our GSCodeBERT.

2https://docs.oracle.com/javase/6/docs/api/
3https://github.com/YoshikiHigo/TinyPDG
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Figure 6: The pipeline of GSMM. The red box is our converter G2SC.
4.2 G2SC Enabled Multi-modal Model
First, we present G2SC enabled multi-modal model, GSMM. In par-
ticular, GSMM utilizes MLP to learn Body Tokens, BiLSTM to learn
Method Name and PDG sequence, and adopts an attention mech-
anism to combine the three code features. The main difference
between GSMM and other multi-modal models is that GSMM uses
G2SC converted PDG sequence for code graph structure learning.

The overall framework of GSMM is shown in Figure 6. The input
code snippets is represented as 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, where 𝑐𝑖 is
the 𝑖𝑡ℎ code snippet. For each code snippet 𝑐𝑖 , it is denoted as the
combination of its method names, Body Tokens and PDG:

𝑐𝑖 =< 𝑀𝑖 ,𝑇𝑖 , 𝑃𝑖 > (3)

where𝑀𝑖 represents the method name in an ordered sequence of to-
kens of 𝑐𝑖 ,𝑇𝑖 is the Body Tokens that is a token set and 𝑃𝑖 = {𝑉𝑖 , 𝐸𝑖 }
is the PDG. GSMM first embeds the code snippets through three
components: Text level representation, Graph level representation and
Attention-based fusion, and then collects the embedding of natural
language description by the description representation component.
Finally, the correlation between code snippets and their natural lan-
guage descriptions is inferred by model training. Next, we present
the five steps in detail respectively.
Text level representation: The text level representation model of
GSMM is similar to that of DCS. It treats the method name and the
token in the code snippet body as the text level. For the method
name𝑀 =<𝑚1,𝑚2, . . . ,𝑚𝑁𝑀

> decomposed as a sequence of tokens,
GSMM embeds the sequence of camel split tokens using a BiLSTM
with maxpooling:

−→
ℎ𝑡 = 𝐿𝑆𝑇𝑀 (−−−→ℎ𝑡−1, 𝜔 (𝑚𝑡 )) ∀𝑡 = 1, 2, · · · , 𝑁𝑀

←−
ℎ𝑡 = 𝐿𝑆𝑇𝑀 (←−−−ℎ𝑡−1, 𝜔 (𝑚𝑁𝑀−𝑡+1)) ∀𝑡 = 1, 2, · · · , 𝑁𝑀

𝑚 =𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔 ( [−→ℎ1;
←−−−
ℎ𝑁𝑀

], · · · , [−−−→ℎ𝑁𝑀
;
←−
ℎ1 ])

(4)

where 𝜔() is the word embedding layer to embed each method
name token𝑚𝑡 into a 𝑑-dimensional vector;

−→
ℎ𝑡 and

←−
ℎ𝑡 represent

the hidden states of the forward and backward LSTM in BiLSTM,
respectively; [𝑎;𝑏]∈𝑅2𝑑 represents the concatenation of two vectors.
The final hidden state ℎ𝑡 of BiLSTM is jointly represented by the

corresponding
−→
ℎ𝑡 and

←−
ℎ𝑡 . A method name is thus embedded as a 𝑑-

dimensional vector𝑚. As for the Body Tokens𝑇 =
{
𝑡1, 𝑡2, . . . , 𝑡𝑁𝑇

}
,

considering that DCS considers them to have no strict order in the
source code, we also embed them via a MLP layer:

ℎ𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝑇𝜔 (𝑡𝑖 )) ∀𝑖 = 1, 2, ..., 𝑁𝑇

𝑡 =𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔( [ℎ1, · · · , ℎ𝑁𝑇
])

(5)

where 𝜔() embeds each token 𝑡𝑖 into a 𝑑-dimensional vector, and
𝑊𝑇 is the matrix of trainable parameters. All hidden states ℎ𝑖 are
summarized to a single vector 𝑡 for the Body Tokens by maxpooling.
Graph level representation: Given a PDG sequence 𝑃=<𝑝1, 𝑝2,
· · · , 𝑝𝑁𝑃

>, which is already processed by our G2SC, we adopt an-
other BiLSTM with maxpooling to embed it:

−→
ℎ𝑡 = 𝐿𝑆𝑇𝑀 (−−−→ℎ𝑡−1, 𝜔 (𝑝𝑡 )) ∀𝑡 = 1, 2, · · · , 𝑁𝑃

←−
ℎ𝑡 = 𝐿𝑆𝑇𝑀 (←−−−ℎ𝑡−1, 𝜔 (𝑝𝑁𝑃−𝑡+1)) ∀𝑡 = 1, 2, · · · , 𝑁𝑃

𝑝 =𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔 ( [−→ℎ1;
←−−−
ℎ𝑁𝑃
], · · · , [−−−→ℎ𝑁𝑃

;
←−
ℎ1 ])

(6)

where 𝜔() is the word embedding layer to embed each token 𝑝𝑡
in PDG sequence into a 𝑑-dimensional vector. In addition, GSMM
gets the final PDG sequence representation 𝑝 through maxpooling
similar to the method name.
Attention-based fusion layer: Finally, the vectors of three as-
pects are fused into one vector through an attention fusion layer:

𝛼𝑖 =
𝑒𝑖

𝑒𝑚 + 𝑒𝑡 + 𝑒𝑝 𝑖 ∈ {𝑚, 𝑡, 𝑝} (7)

𝑐 = 𝛼𝑚 ×𝑚 + 𝛼𝑡 × 𝑡 + 𝛼𝑝 × 𝑝 (8)
where 𝛼𝑖 represents the attention weight of each vector. The output
vector 𝑐 represents the final embedding of the code snippet.
Description representation: For the natural language description
𝐷 =< 𝑑1, 𝑑2, . . . , 𝑑𝑁𝐷

>, GSMM embeds the sequence of camel split
tokens using a BiLSTM with maxpooling:

−→
ℎ𝑡 = 𝐿𝑆𝑇𝑀 (−−−→ℎ𝑡−1, 𝜔 (𝑑𝑡 )) ∀𝑡 = 1, 2, · · · , 𝑁𝐷

←−
ℎ𝑡 = 𝐿𝑆𝑇𝑀 (←−−−ℎ𝑡−1, 𝜔 (𝑑𝑁𝐷−𝑡+1)) ∀𝑡 = 1, 2, · · · , 𝑁𝐷

𝑑 =𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔 ( [−→ℎ1;
←−−−
ℎ𝑁𝐷
], · · · , [−−−→ℎ𝑁𝐷

;
←−
ℎ1 ])

(9)
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where 𝜔() is the word embedding layer to embed each description
word 𝑑𝑡 into a 𝑑-dimensional vector. In addition, GSMM gets the
final description representation 𝑑 through maxpooling.
Model training: We followGu[13] andWan[45] to train theGSMM
model to jointly embed code snippet and description into the in-
termediate semantic space with similar coordination. The goal of
joint representation is that if a code snippet and a description have
similar semantics, their embedding vectors are expected to be close
to each other. In other words, given an arbitrary code snippet 𝐶
and an arbitrary description 𝐷 , GSMM predicts the similarity of
𝐶 and 𝐷 . During the training, we feed a triple <𝐶 , 𝐷+, 𝐷−> into
the model. For each code snippet 𝐶 , there is a positive description
𝐷+ (a correct description of𝐶) as well as a negative description (an
incorrect description of𝐶) 𝐷- randomly chosen from the pool of all
𝐷’s. For any given a set of <𝐶 ,𝐷+,𝐷−> triples, the GSMM predicts
the cosine similarities of both <𝐶 , 𝐷+> and < 𝐶 ,𝐷− > pairs and
minimizes the hinge range loss:

𝐿(𝜃 ) =
∑

<𝐶,𝐷+,𝐷−>∈𝑃
𝑚𝑎𝑥 (0, 𝜖 − 𝑐𝑜𝑠 (𝑐, 𝑑+) + 𝑐𝑜𝑠 (𝑐, 𝑑−)) (10)

where 𝜃 denotes the model parameters; 𝑃 denotes the training
dataset, 𝜖 is a slack variable commonly used in machine learning
and often set as 0.05; 𝑐 , 𝑑+ and 𝑑− are the embedded vectors of 𝐶 ,
𝐷+ and 𝐷−. The intuition behind the ranking loss is that pushing
the model to predict a high similarity between a code snippet and
its correct description and a low similarities between a code snippet
and incorrect descriptions.

4.3 G2SC Enabled CodeBERT Model
Next, we present G2SC enabled CodeBERT model, GSCodeBERT.
Like other pre-trained models, CodeBERT consists of two stages:
pre-training and fine-tuning. As the source code of the pre-training
CodeBERT is not released, we only use G2SC in the downstream
task of CodeBERT.

Figure 7 provides the overall pipeline of GSCodeBERT. Each in-
put code snippet is decomposed into two pairs (𝐷, 𝑆) and (𝐷, 𝑃).
𝐷=<𝑑1, · · · , 𝑑𝑛> is the sequence of tokens𝑑𝑖 , 𝑖∈{1, 2, · · · , 𝑛}, which
are extracted from the natural language description 𝐷 of code snip-
pet. 𝑆=<𝑠1, · · · , 𝑠𝑚> is the sequence of tokens 𝑠 𝑗 , 𝑗∈{1, 2, · · · ,𝑚},
which are extracted from the program language code sequence 𝑆 .
And 𝑃=<𝑝1, · · · , 𝑝𝑘> is the sequence of tokens 𝑝𝑡 , 𝑡∈{1, 2, · · · , 𝑘},
extracted from our 𝐺2𝑆𝐶 converted PDG sequence 𝑃 . All (𝐷, 𝑆)
pairs and (𝐷, 𝑃) pairs are respectively fed into the pre-trained Code-
BERT model with a special token [𝐶𝐿𝑆] indicating the semantic
relevance between 𝐷 and 𝑆 (or 𝑃 ) as input to the downstream
fine-tuning task. This enables our GSCodeBERT model to increase
its understanding of code structure information while retaining
CodeBERT ’s understanding of natural language and code sequence.
Model fine-tuning: we fine-tune the model with a binary classi-
fication loss function, where a softmax layer is used to map the
output vector 𝐶𝑙𝑎𝑠𝑠𝐿𝑎𝑏𝑒𝑙 to a score between [0, 1]. A higher score
indicates the greater similarity between the code Sequence/PDG
Sequence and natural language. Our fine-tuning task consists of
two parts. One is for the similarity between natural language de-
scription 𝐷 and the PDG sequence 𝑃 , and another is between 𝐷 and
the code sequence 𝑆 . Both of them utilize a similar loss function
formulated as follows:

Figure 7: The pipeline of GSCodeBERT.

𝐿(𝜃 ) =
∑

<𝐷,𝑋>∈𝐸
𝑚𝑎𝑥 (0, 𝜀 − 𝑠𝑐𝑜𝑟𝑒 ( [𝐶𝐿𝑆] (𝐷,𝑋 ))

+ 𝑠𝑐𝑜𝑟𝑒 ( [𝐶𝐿𝑆] (𝐷,𝑋−)) + 𝑠𝑐𝑜𝑟𝑒 ( [𝐶𝐿𝑆] (𝐷−, 𝑋 )))
(11)

where 𝜃 denotes the model parameters; 𝐸 denotes the training set;
𝐷 denotes natural language description and𝑋 can be code sequence
𝑆 or PDG sequence 𝑃 ; 𝜖 is a slack variable similar to that in Equation
(10); [𝐶𝐿𝑆] is a special token indicating if (𝐷,𝑋 ) is a positive or a
negative sample. All (𝐷,𝑋 ) pairs are taken as the positive samples.
Both (𝐷,𝑋−) and (𝐷−, 𝑋 ) are negative samples, which have the
balanced number of instances and are created by randomly replac-
ing 𝐷 or 𝑋 in (𝐷,𝑋 ) with 𝐷− or 𝑋−, respectively. The function
𝑠𝑐𝑜𝑟𝑒 () is used to calculate the similarity. Our loss functions aim to
increase (resp. decrease) the similarity score between a sequence 𝑋
and its correct (resp. incorrect) description 𝐷 .

4.4 Code Search
After the model is trained, for multi-modal models with a given
code base 𝐶 and a given query 𝑞, the target is to rank all these
code snippets by their similarities with query 𝑞. We first feed the
code snippet 𝑐 into GSMM and feed the query 𝑞 as the description
to obtain their corresponding representations, denoted as 𝑐 and 𝑞.
Then we calculate the ranking score as follows:

𝑠𝑖𝑚(𝑐, 𝑞) = 𝑐𝑜𝑠 (𝑐, 𝑞) = 𝑐𝑇𝑞

| |𝑐 | | | |𝑞 | | (12)

where 𝑐 and 𝑞 are the vectors of code and query respectively. The
higher the similarity, the more semantic-related the code to the
query. For each query, GSMM returns top-10 most related results.

For pre-trainedmodels, as described in Section 4.3, for each query
𝑞, we feed 𝑞 paired with all code sequence 𝑐 ∈ 𝐶 to the model. The
input is formalized as ( [𝐶𝐿𝑆]𝑞 [𝑆𝐸𝑃]𝑐). After CodeBERT processing,
the tag embedding corresponding to [𝐶𝐿𝑆] is returned. Further, we
calculate the similarity through the trained downstream classifier
shown below:

𝑠𝑖𝑚(𝑐, 𝑞) = 𝐷𝑇 (𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 ( [𝐶𝐿𝑆] (𝑐, 𝑞))) (13)
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where 𝑐 and 𝑞 are the sequences of code and a query respectively.
[𝐶𝐿𝑆] is a special token corresponding to each (𝑐, 𝑞) pair. 𝐷𝑇 ()
represents the Downstream Task that scores the Class Label pro-
cessed by CodeBERT. In addition, the higher similarity indicates a
stronger match between the code and the query.

5 EXPERIMENT
5.1 Research Questions
Our experiment is guided by answering the following research
questions:
• RQ1: How much can G2SC improve the state-of-the-
art multi-modal model for semantic code search?
We compare our GSMM with DCS andMMAN in code search
on two real data sets to prove G2SC can effectively improve
the effectiveness of multi-modal models.
• RQ2: How much can G2SC improve the state-of-the-
art CodeBERT-based model for semantic code search?
We boost CodeBERT by integrating our PDG sequence and
compare ourGSCodeBERT with the state-of-the-art pre-trained
models CodeBERT and GraphCodeBERT.
• RQ3:How do our proposedmodels behave using other
features converted by G2SC?
Since there are some other code features that can be used
by G2SC, we design a series of experiments to show the
benefit of choosing text information and PDG for both the
multi-modal model and the pre-trained model.

5.2 Experiment Setup
5.2.1 Data Set. In our experiment, we have used two different
datasets including CodeSearchNet and JAVA-2M. Following [13]
and [45], we construct our first dataset based on the source codes
from CodeSearchNet [22] as our first data set. In particular, the
original dataset contains 542,991 java code snippets. After removing
code snippets for which their AST, API, CFG, or PDG cannot be
extracted, we retain 390,504 snippets as the final training dataset.

To further investigate the models’ capability of handling large-
scale dataset, following [13, 22], we construct our second larger
data set JAVA-2M by following three steps: 1.) We download the
Github repositories published from August 2016 to September 2020
with the programming language labeled as Java through Github
API. On the basis of [13], we set the minimum number of stars of
the repositories as 10 to ensure the code is of substantial quality. 2.)
To provide models code snippets with natural language description,
we retain those Java methods extracted from the repositories with
English annotation before the code snippet. And we remove the
method without annotation or annotated by other languages. As a
result, each method consists of code snippet and its corresponding
natural language annotation. 3.) We extract the API, AST, CFG, and
PDG from all the extracted methods, and drop those without these
information. In the end, JAVA-2M contains 2,141,921 Java methods.

For the codebase, we use the same code base as CodeBERT pro-
vided by Husain et al.[22] and retain the methods with all the API,
AST, CFG, and PDG information. These methods are different from
the training corpus, as they are considered in isolation and contain
codes without descriptions. In the end, we get 1,569,525 method
candidates as our code search base.

5.2.2 Experiment Setting. To train GSMM, we set the batch size
as 64. We set the size of vocabulary to 10,000 to ensure the word
coverage rate of the corpus reaches more than 95%. Inspired by
[13], we set the maximum length of method name, natural language
and token to 6, 20 and 50 respectively. We truncate the sequence
whose length is beyond the maximum length. The sequences below
the maximum length are padded with a special token <PAD> to
the maximum length. For LSTM unit, we set the hidden size to be
256. Similarly, for MLP, the embedding vector dimension is set to
512. We update the parameters by utilizing Adam [24] optimizer.
To make the model with better generalization ability, we set the
dropout rate as 0.25. All the experiments are implemented using
the PyTorch 1.2 with Python 3.7, and the experiments were con-
ducted on a server with 2 Nvidia RTX 2080Ti. We follow the same
parameters released by the original authors and apply them to all
the considered algorithms for a fair comparison (DCS4,CodeBERT5
and GraphCodeBERT5).

5.2.3 Evaluation Metric. To measure the effectiveness of the ap-
proaches, we employ three widely used metrics including FRank,
SuccessRate@k, and MRR [13, 45].

FRank, also known as best hit rank, is the rank of the first hit
result in the result list. It is practical measurement as it considers
the pattern that users often scan the results from top to bottom.
A smaller FRank implies lower inspection effort for finding the
desired result.

SuccessRate@𝑘(R@k), also known as success percentage at
𝑘 , measures the percentage of queries for which more than one
correct result could exist in the top-𝑘 ranked results. The higher
the SuccessRate@𝑘 is, the better the code search performance is.

MRR denotes the mean of the reciprocal ranks of results for a
given set of queries Q. The reciprocal rank of a query is the inverse
of the rank of the first hit result. And the higher the MRR value is,
the better is the code search performance.

5.2.4 Evaluation Methodology. For RQ1, when comparing multi-
modal models, we follow DCS and use human judgement. For hu-
man judgement, we use the 50 Java questions provided by DCS.
The manual analysis was performed independencyly by 3 graduate
students with 3-5 years of experience in Java and the develop-
ers performed an open discussion to resolve conflict grades for
the 50 questions. To test the statistical significance, we also ap-
ply Wilcoxon signed-rank test (𝑝 < 0.05) for the comparison of
FRank for all the queries. We conservatively treat the FRank as
11 for queries that fail to obtain relevant results within the top 10
returned results. The p-values for the comparisons are all lower
than 0.05, indicating the improvement of GSMM over the related
approaches is significant.

For RQ2, note that CodeBERT was pre-trained on CodeSearchNet,
we also use the CodeSearchNet to train other pre-trained models to
facilitate a fair comparison. Then we employ the same automatic
evaluation method that was used to evaluate original CodeBERT.

For RQ3, since both multi-modal models and pre-trained models
are considered, we use human judgement and automatic evaluation
simultaneously.

4https://github.com/guxd/deep-code-search
5https://github.com/microsoft/CodeBERT
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5.3 Answer to RQ1
To answer RQ1, we measure the effectiveness difference between
GSMM, GSMM-w/o.A(GSMM without attention)), DCS and MMAN
on two real data sets CodeSearchNet and JAVA-2M.

Table 1: GSMM, DCS and MMAN search effectiveness on
CodeSearchNet

Model R@1 R@5 R@10 MRR
DCS 0.20 0.36 0.48 0.26
MMAN 0.22 0.40 0.50 0.29
GSMM-w/o.A 0.24 0.40 0.52 0.33
GSMM 0.34 0.58 0.62 0.47

Table 2: GSMM, DCS and MMAN search effectiveness on
JAVA-2M

Model R@1 R@5 R@10 MRR
DCS 0.20 0.42 0.66 0.31
MMAN 0.26 0.56 0.74 0.38
GSMM-w/o.A 0.34 0.74 0.78 0.49
GSMM 0.50 0.80 0.86 0.62

Table 1 shows the performance of GSMM, DCS and MMAN on
CodeSearchNet. The results demonstrate that GSMM consistently
outperforms MMAN and DCS on all the evaluation metrics. For
example, GSMM performs better thanMMAN by 62%, 55%, 45% and
24% in terms of MRR, R@1, R@5 and R@10, respectively. GSMM
outperforms DCS by 81%, 70%, 61% and 29% respectively in terms
of MRR, R@1, R@5 and R@10.

We conduct the experiment on JAVA-2M by following the same
setting. As shown in Table 2,GSMM shows significant improvement
compared with DCS and MMAN on all the metrics. For example,
GSMM improves MMAN by 92%, 43%, 16% and 63% on R@1, R@5,
R@10 and MRR respectively while it outperforms DCS by 150%,
90%, 30% and 100% respectively in terms of R@1, R@5, R@10 and
MRR. Further, the FRank statistics in Table 3 shows that GSMM has
less NF (not found) than the two baselines. This means GSMM can
answermore questions, and the correct code snippets recommended
by GSMM are ranked higher in the recommended list.

To further investigate the performance improvement of GSMM,
we compare GSMM-w/o.A, the version for GSMM without attention
mechanism, with the baselines shown in Table 1 and Table 2. From
the results, we can see that even without attention mechanism,
GSMM still outperforms other baselines like DCS, MMAN. For ex-
ample, GSMM-w/o.A is 27% and 14% higher than DCS and MMAN
respectively in terms of MRR on the CodeSearchNet dataset, and
29% and 58% higher than DCS and MMAN in terms of MRR on the
JAVA2M dataset. This further verifies the improvement of GSMM’s
search effectiveness is not only from attention mechanism but also
the features learned from code graphs.

Moreover, the results show that GSMM outperforms the two
baselines significantly. The potential reason for GSMM outperform-
ing DCS could be that GSMM learns richer semantic information
from the code graph using G2SC while DCS cannot utilize code

Table 3: FRank list of first 50 Java questions toGSMM,MMAN
and DCS on JAVA-2M

Query DCS MMAN GSMM

1. convert an inputstream to string 6 1 1
2. create arraylist from array 1 1 1
3. iterate through a hashmap NF 6 7
4. generate random integers in a specific range 1 4 4
5. converting string to int in java NF NF NF
6. initialization of an array in one line 7 6 2
7. how can I test if an array contains certain value 6 8 5
8. lookup enum by string value NF NF 1
9. breaking out of nested loops in java NF NF NF
10. how to declare an array 6 5 4
11. how to generate a random alpha-numeric string 2 3 2
12. what is simplest way to print a java array NF NF NF
13. sort a map by values 1 1 1
14. fastest way to determine if an integer’s square root is an inte-
ger

NF NF NF

15. how can I concatenate two arrays in java 4 5 5
16. how do I create a java string from the contents of a file 1 1 1
17. how can I convert a stack trace to a string 1 1 5
18. how do I compare strings in java 4 2 1
19. how to split a string in java NF 4 2
20. how to create a file and write to a file in java 4 3 1
21. how can I initialize a static map 5 5 5
22. iterating through a collection, avoiding concurrent modifica-
tion exception when removing in loop

NF NF 4

23. how can I generate an md5 hash 1 1 1
24. get current stack trace in java 2 1 1
25. sort arraylist of custom objects by property 2 1 1
26. how to round a number to n decimal places in java NF 5 1
27. how can I pad an integers with zeros on the left NF NF NF
28. how to create a generic array in java 7 6 4
29. reading a plain text file in java 1 2 1
30. a for loop to iterate over enum in java NF NF NF
31. check if at least two out of three booleans are true NF NF NF
32. how do I convert int to string NF NF 1
33. how to convert a char to a string in java NF NF 1
34. how do I check if a file exists in java 6 3 1
35. java string to date conversion 1 1 1
36. convert inputstream to byte array in java 2 1 2
37. how to check if a string is numeric in java NF 8 1
38. how do I copy an object in java 1 1 1
39. how do I time a method’s execution in java 5 3 3
40. how to read a large text file line by line using java 6 4 1
41. how to make a new list in java NF NF 1
42. how to append text to an existing file in java 4 1 1
43. converting iso 8601-compliant string to date 1 1 1
44. what is the best way to filter a java collection 9 8 3
45. removing whitespace from strings in java 10 7 1
46. how do I split a stringwith anywhitespace chars as delimiters 7 5 5
47. in java, what is the best way to determine the size of an object 5 2 1
48. how do I invoke a java method when given the method name
as a string

7 7 2

49. how do I get a platform dependency new line character 9 6 1
50. how to convert a map to list in java NF NF 2

graph information. The reason why GSMM is better thanMMAN is
twofold. First, the size of code graphs are usually small. As demon-
strated in Section 1, GNN s generally perform better on large-scale
graphs. Benefiting from G2SC, GSMM can address this problem by
performing a specific traversal of the code graphs and convert them
into sequences in a lossless manner that can be easily learned by
BiLSTM. Another reason is MMAN does not utilize node attribute
information in the code graph by GNN. The attribute of each node
in the code graph is the statement corresponding to the node, the
information of which is exactly what attribute graph embedding
needs. G2SC can not only keep the structure information between
nodes, but also the order of tokens inside the node. Thus, the infor-
mation of code statements can also be retained intact.

Answer to RQ1: GSMM outperforms the state-of-the-art model
MMAN and DCS significantly in terms of all the evaluation
metrics for code search.

730



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yucen Shi, Ying Yin, Zhengkui Wang, David Lo, Tao Zhang, Xin Xia, Yuhai Zhao, and Bowen Xu

5.4 Answer to RQ2
To explore if our G2SC can improve pre-trained models, we choose
two recent and well-known models CodeBERT and GraphCode-
BERT for comparison. As described in Section 4.3, GSCodeBERT is
fine-tuned based on both code sequences and the PDG sequences
converted by G2SC.

Table 4: CodeBERT, GraphCodeBERT and GSCodeBERT re-
sults on CodeSearchNet

Model R@1 R@5 R@10 MRR
CodeBERT 0.630 0.878 0.917 0.741
GraphCodeBERT 0.649 0.875 0.916 0.751
GSCodeBERT 0.792 0.890 0.920 0.837

Table 4 presents the performance of CodeBERT, GraphCodeBERT,
and our approach GSCodeBERT. The results show GSCodeBERT
achieves a significant better performance than CodeBERT, e.g., by
13% and 25.7% in terms of MRR and R@1. The potential reason
may be CodeBERT can further leverage the structure information in
code snippet to learn a better mapping between code snippets and
natural language with the support of G2SC. And compared with
GraphCodeBERT, GSCodeBERT achieves better performance on all
the metrics consistently, e.g., 11.5% in MRR and 22% in R@1. The
reason may be GraphCodeBERT uses a self-created variable graph
that only contains the structure information between variables.
Differently, our PDG sequence carries richer information such as
control dependency and data dependency of the code snippet.

Answer to RQ2: By integrating G2SC into CodeBERT, the per-
formance can be significantly improved for code search, even
better than GraphCodeBERT by large margin in terms of R@1
and MRR.

5.5 Answer to RQ3
To explore the potential best features combination in ourmodels, we
design an experiment of comparing commonly used code features
with multiple combinations. In particular, we consider five types
of code features, text, API, AST, CFG, and PDG. We use G2SC to
convert code structural representation into code sequences and
use the BiLSTM for feature embedding. For AST, we follow [20]
and preserve the properties of each node to obtain the sequence
properties of the AST rather than the original sequence of the code.
For AST and CFG, since none of their edges has attributes, we
ignore the related judgments of edges attributes in G2SC.

Table 5 presents the comparison between five features and four
combinations in GSMM. The results show that GSMM achieves the
best performance with PDG among all. Moreover, we find that both
CFG and PDG perform better than code Text information. This
means that graphs contain richer semantic information. However,
we can still observe that Text contribute its own to performance. In
particular, the combination “Text+PDG” performs the best among
all the considered combinations.

In Table 6, GSCodeBERT (Text) denotes the original CodeBERT.
We observe the similar result withGSMM, the combination “Text+PDG”

Table 5: Comparison of features and their combination in
GSMM

Features R@1 R@5 R@10 MRR
Text(MethodName+Token) 0.16 0.40 0.50 0.26
API 0.10 0.26 0.40 0.17
AST 0.06 0.20 0.28 0.14
CFG 0.14 0.40 0.52 0.27
PDG 0.16 0.42 0.58 0.29
Text+API 0.20 0.42 0.66 0.31
Text+AST 0.18 0.38 0.60 0.29
Text+CFG 0.32 0.70 0.74 0.47
Text+PDG 0.34 0.74 0.78 0.49

Table 6: Comparison of features and their combination in
GSCodeBERT

Features R@1 R@5 R@10 MRR
GSCodeBERT(Text) 0.630 0.878 0.917 0.741
GSCodeBERT(Text+API) 0.704 0.877 0.907 0.783
GSCodeBERT(Text+AST) 0.644 0.862 0.902 0.742
GSCodeBERT(Text+CFG) 0.776 0.884 0.913 0.826
GSCodeBERT(Text+PDG) 0.792 0.890 0.920 0.837

achieves the best performance while “Text+CFG” performs the sec-
ond best. In particular, the combination “Text+PDG” outperforms
“Text” by 13% and 25.7% in terms of MRR and R@1.

Answer to RQ3: Adopting G2SC algorithm to convert PDG
is more effective than other code features in performing
semantic code search. Moreover, the combination of feature
Text and PDG can achieve promising results in both multi-
modal models and pre-trained models.

5.6 Threats to Validity
In this paper, we analyse the performance of all models on Code-
SearchNet and multi-modal models on JAVA-2M. The two real data
sets both are collected from Github. The training sets contains the
source codes with the corresponding description, while the search
code base provided by [22] contains all the source codes (including
codes without description). According to the report in [13], we
believe the threat of overfitting for this overlap is not significant.
The 50 queries collected from Stack Overflow can further meet the
real-world search, and those are not descriptions of code snippets
used for training.

In our experiments, the human evaluation of code snippets is
manually done and could suffer from human bias. To mitigate this
threat, we have taken the below two prevention measures: 1.) we
randomly divide the code snippets into three parts on average
and distribute to three developers; 2.) the developers hold an open
discussion to mitigate the manual bias on 50 queries.

6 RELATEDWORK
Code search. In the code search task, many studies focus on API
recommendation [14, 15, 31, 55]. Li [28], Van [44] and Nguyen

731



How to Better Utilize Code Graphs in Semantic Code Search? ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

[35] represented the code snippet as an API set, and represented
the API features based on Word2vec model to recommend the
appropriate API. Chan et al. Recently, with the growth of open-
source code repositories such as GitHub [13], it becomes quite
common for developers to search relevant code snippets based on
their own requirements. Some code retrieval tools have appeared
[4, 25, 26, 36, 54]. Traditional code searching tools are based on
keyword matching. In particular, code snippets and natural lan-
guage queries are regarded as token sets, and appropriate code
snippets are recommended according to the similarity of keywords
[5, 18, 32, 42]. Lu [30] et al extended the query semantically through
WordNet. Gvero [17] et al. allow mixed input in English and Java,
and constructed a probabilistic context-free grammar for Java con-
structs and library invocation. Keivanloo [23] et al. used a code
cloning detectionmodel to support spottingworking code examples.
With the successful development of deep learning, Gu et al. [13]
first applied deep learning technology in code search and proposed
DCS model. Wan et al. [45] proposed MMAN to further introduce
the graph information of the code into the code retrieval task. In
addition to code features (API[8], AST[12, 51] and graph[45]) and
attention [9], researchers also improved the code search model from
other directions. Yao et al. [52] introduced reinforcement learning
mechanism and improved the search effect of existing code search
models by combining with them, the performance of reinforcement
learning model alone is not as good as DCS. Ye et al. [53] connected
code summary task with code retrieval task, and learned the two
tasks simultaneously through dual learning method to improve the
effect of code summary and code search.
Deep code representation. In software engineering, there are also
other code related works [6, 21, 37, 38, 50], such as bug location
[27, 27], code summary [1, 46, 48], clone detection [49] and code
completion [41]. The introduction of code structure information is
also applied in these deep code representation tasks. Code2vec [3]
converted code snippets into ASTs, extracted path information of
all leaf nodes, and learned code features through attention mecha-
nism to predict the function method names. Mou et al. [34] used
convolution neural network based on tree structure to capture the
features of neighbour nodes in AST, and obtained the semantic
information for program classification and source code similarity
detection. Allamanis et al. [2] took AST as the structure backbone,
added data flow information and side information on the basis of
AST to transform AST into a graph containing more information,
and applied GGNN to embed it for code variable misuse task. Wang
et al. present CodeT5[47] for code related generation task, which is
a pre-trained model based on T5[39]. In addition, CodeBERT [10]
and GraphCodeBERT [16] both designed a pre-trained model to
learn the relationship between programming language and natural
language. They can be applied to various tasks in code representa-
tion through different downstream tasks, such as the code search
task described in this paper.

7 CONCLUSION AND FUTUREWORK
In this paper, to better learn the code graphs, we proposed G2SC, an
algorithm that can convert graphs to lossless sequences for semantic
code search. G2SC transforms the graph into a special sequence that
is able to retain the graph information for representation learning.

To the best of our knowledge, this is the first time to introduce such
a graph to sequence algorithm into the semantic code search task,
which can be effectively learnt using the deep neural network to
capture the structure information on the data representation. Our
experimental results show that by inducing G2SC into multi-modal
model, GSMM outperforms the state-of-the-art multi-modal models
significantly in terms of code search effectiveness. Additionally, we
added G2SC to the downstream task of the pre-trained model and
achieved a great improvement in code search performance.

In the future, we will further try to apply our G2SC to other
kinds of code search models. And we will try to investigate how
well our proposed G2SC can cooperate with those models.
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